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Chapter 1

INTRODUCTION

Parallelism or redundancy is routinely used to achieve high reliability in systems

where high levels of safety must be assured (e.g., aircraft, nuclear reactors,

space and defense systems). Other factors that might drive the use of

redundancy are unacceptability of down time (e.g., defense radar systems) or

high down time cost. For example, fault tolerant computers have been used for

several years. However, ordinary microcomputers are commonly used to control

manufacturing equipment and processes. Because down time can be quite

expensive for manufacturing equipment, microcomputers that achieve high

reliability using redundancy are increasingly available.

The typical treatment of redundancy in reliability analysis of mission-oriented

applications is, in most cases, relatively straightforward [3]. In such applications,

one is concerned with the probability of successful operation over some defined

mission time. The probability of successful operation of the parallel system is

just the probability that at least one of the parallel components does not fail. In

analysis of repairable systems, treatment of redundancy becomes more complex

[4]. In this case, system performance measures such as mean time between

failures, availability, and system mean time to repair are of interest. The

analysis is further complicated by the possibility that failed components can be

repaired while the system continues to operate on other parallel components.

In this report, we develop equations for several redundancy options for both

repairable and non-repairable systems. For all configurations in this report, we

will assume that individual components have a constant failure rate. For

repairable systems, we consider the following six redundancy treatments:
.

Active with Repair All parallel components are active with only one needed

for success. A failed component can be repaired while the system continues

to operate on other parallel components.

1



Active without Reoair All parallel components are active with only one

needed for success. Failed components are not repaired until

components have failed. Then all are repaired.

Sfandbv with Reoair Only one of the redundant components is

others held in standby. In case the active component fails,

component can be switched on either manually or automatically.

component is repaired while the system operates using

component.

all parallel

active with

a standby

The failed

a standby

Star?cfbv without Reoair Only one of the redundant components is active

with others held in standby. In case the active component fails, a standby

component can be switched on either manually or automatically. The failed

component is not repaired until all redundant components have failed.

R of /V with Re~air The system consists of N components of which R (1 < R

< N) are required for success. Failed components are repaired while the

system operates.

R of N without Reoair The system consists of N components of which R (1 <

R < N) are required for success. Failed components are not repaired until

more than N - R have failed

example of R of N redundancy

lug nuts. If 4 are considered

provide 4 of 5 redundancy.

and the system cannot operate. For an

without repair, consider a car wheel with 5

necessary for safe operation, the lug nuts

While there are a multitude of ways to design redundancy, the six options

treated in this document provide good coverage of the range of effectiveness of

redundancy in repairable systems. In each case, the intent is to find an

equivalent failure rate and repair time for the redundant components. Even

though we assume that failure rates of individual components are constant, the

equivalent failure rates for parallel components are generally not constant for

any of the redundancy options. The possible exceptions are the standby

redundancy options which have at least piece-wise constant failure rates since

only one component is active at any time. For the redundancy options that

involve repair while the parallel system remains active, we calculate the mean

time between failures (MTBF). For redundancy options that do not involve repair

2



of failed components until the parallel system fails, we calculate the mean time

to fail (MITF). In both cases, we treat the reciprocal (1/MTBF or l/MITF) as the

average failure rate of the parallel components that are part of a larger

repairable system.

Chapters 2 through 7 develop equations and algorithms for the above six

redundancy options in repairable systems.

For non-repairable systems, we consider three redundancy treatments:

Active All parallel components are active with only one needed for success.

The redundant system fails only when all parallel components fail.

W!m!2Y ofllY one of the redundant components is active with others held in

standby. In case the active component fails, a standby component can be

switched on either manually or automatically. The redundant system fails

only when all parallel components fail.

R of N The system consists of N components of which R (1 < R < N) are

required for success. The redundant system fails only when less than R

components are operable (i.e., when N - R + 1 components have failed).

For redundancy in non-repairable systems, our interest is in calculating the

reliability of the redundant arrangement. The reliability of the above three

redundancy treatments in non-repairable systems is addressed in Chapters 3, 5,

and 7.

All redundancy options listed are being implemented in the Reliability Analysis

and Modeling (RAMP) software. Version 1 of RAMP ([1], [2]) treated active with

repair for uniform repair times for all components in the system. Version 2 of

RAMP incorporates all of the options listed above with component-specific repair

times and failure rates, and will be released in 1993.

3
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Chapter 2

ACTIVE WITH REPAIR

In the active with repair redundancy option, we assume that two or more

components are active and only one component is necessary for successful

operation. In case a component fails, it is repaired while another active

component performs the required function. The parallel system fails only if all

parallel components are down at the same time. In the following discussion, we

take the mean time to repair as the total down time, that is, the time period

beginning when a component or the system fails and ending when the

component or system returns to operation.

Two Parallel Components - Active with Repair

Consider two components in parallel as shown in Figure 2.1 below. The mean

time between failures and the mean time to repair (MTTR) are

MTBF~ = T~A

MTBF~ = T&

(2.1)

Implicit in Equations (2.1) is that times to failure and times to repair follow an

exponential distribution. That is

QFA= l_ e-t/TF. (2.2)

where Q~~is the probability that component A fails during time t. Similarly, Q~~is

the probability that component A, having failed, is repaired during time t.

5



E3-A

B

Figure 2.1 Two Components in Parallel

If either component A or B fails, the system does not fail unless the second

component fails before the first can be repaired. Then the fraction of time that

component A is down is

Tw
F~ =

T~~+ Tm “

Similarly, the down time fraction for component B is

(2.3)

T
F~ =

T~e~T,, “
(2.4)

The system is down only if both A and B fail. Since both components are

assumed to have a constant failure rate and failures occur randomly, the down

time fraction for the system is

F~ = FAF~ = ‘w
T

T~~ + TM T~~ ;T~~
(2.5)

We now need to calculate the average down time when the system fails. For the

system to fail, both A and B must fail. The average time to repair the system is

the average time before either A or B is repaired. Recalling Equation (2.2) and

setting PA=l/T~A, the probability that A is not repaired during time t is e-~At.

Similarly, the probability that B is not repaired during time t is e-wBt . The

average time over which neither A nor B are repaired can be found from

m
T~~ = ~ te-PA’e-v”dt / ~ e-PA’e-P”dt

o 0 .

(2.6)



Performing the integrals we get

‘RS = (VA + d
[ 1‘-(wA+M’)’,{-(KA +d - II m‘
h%+d Jo

TRS is the average down time when the system (both

expected number of failures per hour of the system

fraction divided by the mean time to repair the system.

FS (Tm+T~, )

RS= (T,A +TM)(T,, +T,, ) ‘T

and the system MTBF is

T
FS

1-FS

(/)

F~
T

RS

(2.7)

A and B) fails. Then, the

is the system down time

That is

(2,8)

1

(LA+-u
(T~A+ Tm)(T~~ + T., )

T = (T,A + TM)(T,, + TR~) - TmTR~
FS -1- .T

Im + IRB
.

Availability is given by

Availability= A =
T

TFS;T~S .

As a numerical example, let

(2.9)

(2.10)

(2.11)

T~~ = 50 hr T~A = 3 hr

T~~ =100hr T~~ =5hr



This problem was analyzed by Markov analysis and using the equations

developed above. Comparison of Markov analysis results with results obtained

using Equations (2.7), (2.10), and (2.1 1) is shown in Table 2.1.

Table 2.1

Calculated Markov Analysis

Availability 0.9973 0.9973

MTBF (TFs) 694 hr 694 hr

MITR (TRs) 1.88 hr 1.88 hr

Comparison for Two Components in Parallel, Active with Repair

The results in Table 2.1 show excellent agreement between the equations

developed above and the Markov analysis.

Three Parallel Components - Active with Repair

Consider 3 components in parallel as shown in Figure 2.2.

@

A

B

c

Figure 2.2 Three Components in Parallel

As before,

(2.12)



F. = F~F,Fc =
TwT~~T~c

(2.13)
(T~A + Tm )(T~~ + T~~)(TFC + TRC ) ,

We have shown earlier (Eq. 2.7) that the average down time for components A

and B is

Tm = ‘MT”
Tw + TRB

(2.14)
.

By a similar argument, we can show that the average down time overlap

between AB and C is

T _ Tm~TRC 1

‘S- TW+TRC= 1 1— —
TW + TRC.

Therefore, the average system down time (MTTR) is

T.. =
1 1=

1111‘RA+TRB{ _ _ —

TWTRB TRC Tm + TR~+ TRC.

The average system down time per failure is

F~ (TWTRB+ TmT~C + T,,TRC )

TRS= (TF, +Tm)(TF, +TR, )(TFC+TRC)”
(2.17)

Then, the system MTBF is the fraction of time the system is operating divided by

the number of system failures per hour. That is

1-FS
T,~ =

(/)

F~ =
T ‘S

(2.15)

(2.16)

(2.18)

[

T~~T~~+ TRATRC+ TR~TRC

(T,. + T,. )(T,, + T,. )(T,= + TRC))

9



~ )(T~~ + T~~)(T~C + T~C) - TMT~~T~cT~~ = (TFA + T
TWTRB + TmTRc + TRBTRC

(2.19)

Results obtained using Equations (2.16) and (2.1 9) were compared with a

Markov calculation for three components in parallel having the following MTBF’s

and MITR’s:

T~A = 100 hr T~A = 5 hr

‘FB =50 hr T~B =3hr

T~c = 25 hr T~c =2hr

The comparisons are shown in Table 2.2.

Calculated Markov Analysis

Availability 0.9998 0.9998

System MTBF (TFs) 4846 hr 4846 hr

System MITR(TRs) 0.968 hr 0.968 hr

Table 2.2 Comparison for Three Components in Parallel, Active with Repair

N Parallel Components-Active with Repair

The key results from the previous sections can now be generalized. Assume n

components in parallel (active with repair). Let their MTBFs and MTTRs be

MTBF for component i = TW(hr) MTTR for component i = TRi (hr)

MTBF for the system = TFS (hr) MTTR for the system = TRs (hr)

Then for N components in parallel,

Il(TFi +TRi)- I_ITRi
TFS = i=l,N i=l,N

[)

*
i#k

X IITRi
k=l,N i=l,N

(2.20)

and

10



1
IRS =

[)

.

z+
I=l,N Ri

(2.21)

Equations (2.20) and (2.21 ) were compared with Markov analysis results for the

following case of 5 components in parallel.

‘F1 =lOhr ‘RI =2hr

‘F2 =15hr TRZ =3hr

‘F3 = 12 hr ‘R3 =4hr

‘F4 =8 hr TRd = 2 hr

TF~ =20 hr T~~ =5hr

The results of this comparison for 5 parallel components are shown in Table 2.3.

Calculated Markov Analysis

Availability 0.99972 0.99972 ‘

System MTBF (TFs) 2018 hr 2018 hr

System MITR(TRs) 0.56 hr 0.56 hr I
Table 2.3 Comparison for Five Components in Parallel, Active with Repair

As before, the comparisons between the equations developed above and

Markov analysis are excellent.

The results given by Equation (2.20) can be used to calculate an average failure

rate as

11
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Chapter 3

ACTIVE WITHOUT REPAIR

With this redundancy option, as in the active with repair option, all parallel

components are active but only one component is needed for success.

However, in a repairable system, failed components are repaired only after all

parallel components have failed. This is one of the least effective uses of

redundancy in terms of improving system reliability.

Two Parallel Components - Active without Repair

We begin again with two components in parallel as shown in Figure 2.1.

Suppose both A and B are active but the system requires only one of them for

successful operation. Let WA (WB) be the event that A (B) fails. Then the failure

probability for the simple parallel system of Figure 2.1 is

P(w~) = P(WA n WB)
(3.1)

That is, the combination of A and B in parallel fails if both A and B fail. if these

events are independent, that is, if the failure or success of either component

does not influence the failure or success of the other, then

Q. = QAQ, (3.2)

Recall that Q is used to denote probability of failure (unreliability). If RA and RB

are the reliabilities of A and B, then the probability of system failure is

Q. =(l-RA)(W?B)

The system reliability is given by

R~=l-Q~= l-(l-RA)(l-R, )

(3.3)

(3.4)

13



That is, the probability of successful operation of the parallel system over time t

is 1 minus the probability that both components fail during t. We will calculate

the mean life of the system (mean time to system failure). For a repairable

system where the repaired system is as good as new, the mean life is the same

as the MTBF. The mean life of the system is given by

T,. = jR~(t) dt = j[l-Q,~(t) Q,,(t)] dt
o 0 .

If we assume that components A and B have a constant failure

and b, then

T,, = ~ [1 - {(1 - e-a” )(1 - e-AB’)}] dt
o

(3.5)

rate given by LA

(3.6)

and

T,~=~+~-
1

[)

11-’
=T~A+T~~- — — (3.7)

LA k, AA +L~ TFA+ T,, .

To calculate the mean time to repair for the two parallel components, first

recognize that both must be

repaired. Thus, in analogy to

repaired before the parallel system is considered

Equation (3.5), the mean time to repair is given by

TRS=~[1-%(t)%(t)]dt (3.8)
o

where QRA(t) is the probability that A is repaired in time interval t and QRB(t) is

defined similarly. In words, the mean time to repair the parallel components is

the integral over time of the probability that at least one component is not

repaired. Assuming a constant repair rate (let p be the repair rate), then

T=. = ~[1 - ((1 - e-PA’)(1 - e-’” )}] dt
o

(3.9)
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(3.10)

Given MITR and MITF, availability can be calculated as

Availability= A =
T

T~~;T~~
(3.11)

Comparison of results calculated using Equations (3.7) and (3.10) with

numerical simulation results are shown in Table 3.1 for the following case:

T~~ = 50 hr ‘RA =1 hr

‘FB =50 hr T~B =2 hr

Calculated Markov Analysis

Availability 0.9698 0.9698

System MTTF (TFs) 75 hr 75 hr

System MTTR (TRs) 2.3 hr 2.3 hr

Table 3.1 Comparison for Two Components in Parallel, Active without

Repair

Three Parallel Components - Active without Repair

For three components in parallel (Figure 2.2),

T,. =~RJt)dt=jj-QFA(t)QFB(t)QFc(t)]dt
o 0 .

Again assuming constant failure rates,

T~~ = ~ [1 - {(1 - e-’A’ )(1 - e-’”’ )(1 - e-xc’ )}] dt
o

(3.12)

(3.13)
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Expanding the integrand,

so,

In terms of component MTBF’s,

T~~= T~~+ T~~+ T~C–
[i+*r-[t++r-[*++l’+ (31,)

[ 1
111-’—. .

TFA + TFB + TFC

Calculation of system MTTR follows the same steps. That is,

In terms of component MTTR’s,

[ 1
111-’—— —

Tw + T~~ + T~C

Comparison of results calculated using Equations (3.15) and (3.17) with Markov

analysis results are shown in Table 3.2 for the following case:

TF~ = 50 Iv T~~ = 3 hr

‘FB =100hr ‘RB =5hr

‘FC = 200 hr T~c = 4 hr

16



Calculated Markov Analysis

Availability 0.9697 0.9697

System MITF (TFs) 238.6 hr 238.6 hr

Svstem MITR(TRs) 7.47 hr 7.47 hr

Table 3.2 Comparison for Three Components in Parallel, Active without

Repair.

N Parallel Components - Active without Repair

Equations (3.1 5) and (3.17) can be generalized to N components in parallel as

follows:

Let CS be the set of all components in the parallel arrangement. Subsets

of CS are indicated as K G CS. For example, if A, B, and C are in

parallel, CS is {A,B,C} and subsets are {A}, {B}, {C}, {A, B}, {A, C}, {B, C},

and {A, B,C}. Of course, the null set $ is also a subset. The number of

elements in a set is called its order and is indicated by IKI. We generalize

the equations for MTTF and MTTR in terms of failure rates and repair

rates as in Equations (3,14) and (3.16).

(3.18)

and

[1TRS = ~ (_l)(lK[-l) ~
ZIJ

(3.19)
KcCS i

K#$ i& .

Comparison of results calculated using Equations (3.18) and (3.19) with Markov

analysis are shown in Table 3.3 for the following case:
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Table 3.3

‘F1 =50 hr T~l =3hr

TFZ =100hr T~2 =5hr

‘F3 = 200 hr T~a = 4 hr

T~a = 40 hr ‘R4 =2hr

TF~ = 30 hr T~~ =3hr

Calculated Markov Analysis

Availability 0.9674 0.9674

System MITF (TFs) 242 hr 242 hr

System MITR(TRs) 8.2 hr 8.2 hr

Comparison for Five Components in Parallel, Active without

Repair

Active Redundancy in Non-Repairable Systems

In this case, we are interested in the reliability of active, parallel components

when the system cannot be repaired. From Equation (3.4) for two parallel active

components,

R~=l-Q~= l-(1 -R~)(l-R~) (3.201

For the general case of N components in parallel, we can easily write an

equation for the reliability of the parallel assembly. That is

RP=l-fi(l-Ri) (3.21)
i=l

The implicit assumption in Equation (3.21) is that all parallel components are

active with only one required for success. It is clear that parallel system

reliability increases as the number of parallel components increases. However,

the incremental increase in reliability diminishes with each additional parallel

component. Figure 3.1 shows the reliability of parallel systems as a function of

the number of identical components for several fixed component reliabilities.
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Figure 3.1 Reliability of a Parallel System as a Function of the Number of

Components

The number of components needed to achieve high reliability depends on the

reliability of the individual components.
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Chapter 4

STANDBY WITH REPAIR

Standby redundancy can be designed in a virtually endless

The following discussion describes the assumptions used

presented here.

variety of forms.

in the treatment

For standby redundancy, only one component will be active at any time. When

that component fails, a standby component can be switched on, either manually

or automatically. This standby component will begin working if its switch works.

Switch failures are treated as discrete events with known probability of failure

(p). In the event of a switch failure, the system will go to the next standby

component. Components which are not operable can be repaired at any time. If

all of the components are operable at some point, then the first component will

begin working again, and the component which was working will resume its role

as a standby component. In the event of a system failure, we assume the

system remains down until all of the components are operable and the system

can return to its initial state.

As an example of this treatment, consider a system with four components. Once

the first component fails, we will try to switch to the second component. If the

second component’s switch fails, then we will try to switch to the third

component. If its switch works, then the third component will be working. If the

third component fails before the first component is repaired, then the system will

try to switch to the fourth component. If its switch works, the fourth component

will be working, the second will be operable, and the first and third will both be

inoperable. If the first and third components are both repaired before the fourth

component fails, then the first component will be the active component again. If

the fourth component fails before both the first and the third components are

repaired, then the system will fail.

For this redundancy treatment, we have not derived closed form equations.

Rather, we will describe an algorithm that can be programmed to produce
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accurate results for the assumptions described above. The algorithm presented

here traces the system through all of the possible paths by which it can fail. We

will first go through the algorithm on systems with 2 and 3 components to show

how it works.

Notation

We will let TFi denote the MTBF for component i, TRi denote the mean time to

repair component i, and pi be the probability that the switch to comPonent i fails.

Assume that TFi and TRi are expressed in hours.

To describe a state, we will put a one in the location of components that are

operable, and underline the component that is working, e.g., 01 ~ corresponds to

the first component being down, the second and third components being

operable, and the third component working. If no component is underlined (or

working) then the system is down, i.e., 01 corresponds to the second component

being operable and the system being down. For the discussion of three

components in parallel, we will use superscripts to denote which step or iteration

we have just finished.

Two Components in Parallel- Standby with Repair

The system will start with both components operable and the first working (this

state is written as ~1 ). When the first component fails, the second component

will still be operable but the system may or may not stay up. Thus, the system

will go to either 0~ or 01 depending on whether the switch for the second

component works. Thus, for each of the states we have the transition

probabilities in Table 4.1.

State Probability Expected hours to

reach that state

o~ l-p~ TFI

01 P2 ‘F1

Table 4.1. States and Transition Probabilities for a 2 Component System
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Atstate 01, thesystem has already failed. Thus, weareinterested in where the

system can go from Ol_. From 0~, the system can go to either 00 or j.1

depending on which occurs first - failure of the second component or repair of

the first. The probability that the second component fails before the first is

repaired is:

7P( 1 is not repaired by time t) P(2 fails at time t)=

t=o

()
-1

‘(d::(h)-’ = TJF2”

(4. 1)

Similarly, the probability that the first component is repaired before the second

fails is

TF2

T~l +T~2 .
(4.2)

The expected time until either the second component fails or the first component

is repaired is

a! TRITn
~ te-k’te-’”dt / ~e-i’te-~~dt = 1 = (4.3)

o 0 L2+v1 TR1+T~2” ‘

This gives us the states and transition probabilities in Table 4.2. Since reaching

the state 11 means that the system is reset to the state where it started, the

probability of being in state 01 when the system fails is qO1/(qOO+ qO1) and the

probability of being in state 00 when the system fails is qOO/(qOO+ qol).
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State Probability Hours to Reach that State

01 qol=P2 t 01 =T,l

00
%0 ‘(l-dT :;

T~1T~2
tm = T~l +

RI F2 TR, + TF2

11
qjl ‘(1-P2)T ‘:T

TR1TF2
t,, = TF1 +

RI F2 TR, + TF2

Table 4.2 States and Transition Probabilities for a 2 Component System

The system will return to ~1 some number of times before it fails. We will expec

it to take a certain amount of time each time the system goes from ~1 to 0~ anc

then returns to 11. The more times that the system goes through this cycle, th(

more time will elapse before the system fails. So, if we let Bi be the event tha

system goes back to the state ~1 i times (we do not count the system’s startin(

there as a time that it goes there) and then fails to state 01, then all of the Bi’!

are disjoint, and their union is the event that the system fails to state 01. Ther

the expected time for the system to fail via state 01 is

Sp(B,)p(OllBi)E( time until OllBi)

E(time to fail I fail toOl) = ‘=0

~p(Bi)P(OllBi)
i=O

iihlol)(hl + tol)
=i=o-

jilkh)
i=o -

qo[(l-:llr-%]tl+qo
E(timetofail I faiIto Ol) = -

qol

1–%1

24



[.)E(timetofaill fail toOl) = ~- 1 t,, +tol
l–q,, -

.

(4.4)

Similarly, if the system is in state 00 when it fails, then the expected time until it

fails is

~P(B,)p(OOIBi)E(time until 001 B,)

E(time to fail I fail toOO) = ‘=0

ip(Bi)@olBi)
‘=0

Xlhqoo)(h + too)
‘=0 -=

i(qllqoo)
‘=0 -

%0

1–%

[1E(time to fail Ifail to 00) = ~- 1 t,, +tm
I–qll -

.

(4.5)

Now, since we know the probability of being in each state when the system fails,

and the expected time for the system to fail conditioned on it failing to each

state, we can find the expected time until the system fails. In this case, it would

be

~ =qm[[+-llt~l+twl+qO1[[ti
FS

%0 + qol

25



[1T~~= ~-
, ~ + qmtm +qo,to, (4.6)

l–q,, !1 qm + q~,
.

We stated earlier that the ratios qO1/(qOO+ qO1) and qO~(qOO + qO1) are the

probabilities of being in state 01 and 00, respectively, when the system fails.

These are conditional probabilities: given the system fails, these are the

probabilities of being in state 01 and 00. The conditional probabilities were used

in Equation (4.6) to find the expected time to system failure. They are also used

to find the expected time to repair the system.

If the system fails to 01, then only the first component requires repair. If it fails to

00, then both components must be repaired. Thus, the expected repair time is

T~~ = qol T~l + ‘W ‘R(lz)

% + Clol %0 + qol

(4.7

where TR(12) can be found from Equation (3.10), or in its more 9enera1 form,

Equation (3.1 9).

Comparison of results calculated using Equations (4.6) and (4.7) with Markov

analysis results are shown in Table 4.3 for the following case:

T~~ = 200 hr TR~ =10 hr

T~B = 500 hr T~~ = 20 hr p~ = 0.01

Calculated Markov Analysis

Availability 0.9974 0.9974

System MTBF (TFs) 7130 hr 7130 hr

System MTTR (TRs) 18.8 hr 18.8 hr

Table 4.3 Comparison for Two Components in Parallel, Standby with

Repair.

For the case of two parallel components shown in Table 4.3, the comparison of

Equations (4.6) and (4.7) with Markov analysis is excellent.
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Three Components in Parallel- Standby with Repair

The approach for three components is similar to that presented in the previous

section for two components. When the first component fails, the system can go

to any of three states: 0~1, 01~, or 011. For these states, we have the results

shown in Table 4.4.

State Probability Hours to Reach that State

oil qo~l=l– P2 t 011 = T,l

ol~
qol, =%(m) ; = ‘,1

t 011

011 qoll ‘P2P3 t -T011 – F1

Table 4.4 States and Transition Probabilities for a 3 Component System

If the system is in state Oil, and the first component is repaired before the

second component fails, then the system is reset to 111.

Equation 4.2, then we see that the probability of this is:

P, T

j.+ +L2 ‘T~1;T~2”

If the second component fails before the first component

Equation (4.1 ), then the system will go to state 00~ or

probabilities

T
P

‘~ = TR1;;Fz ()l-p3

If we consider

(4.8)

is repaired (see

state 001, with

(4.9)

(4.10)

If we consider Equation (4.3), then we realize that the time required to reach one

of these three states from 011 is
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T,1T~2
(4.11)

Thus if we wait until the first component has failed, and either the first

component has been repaired or the second component is not working (because

it has failed or its switch failed) then the possible states are shown in Table 4.5.

State Probability Hours to Reach that State

~11 T T~lT,z

‘~” = ‘A ~’ T~l ;2T~2
t;,, = T~l +

T~l + T~2

oo~
‘R’ (1-p,) t:,, = T,l + TTR~;

‘;o~ = ‘;!’ TR1+ T~z
RI F2

001 T TR1TF2

‘:0’ = ‘:~’ TR1;’TF2 ‘3
t:ol = TF, +

TR1+TF2

ol~ %! = dl~ t;,, =T,l

011 %1 = q:ll t:,, =TF1

Table 4.5 States and Transition Probabilities for a 3 Component System

We are interested in the system failing, so we want to know whether the system

will get to 00~, 001, 01~, or 011 first, and how long it will take to get there.

Recall our assumption that when the system fails, we require that all failed

components be repaired before the system is placed back in operation. Since

going to~11 means that the system is reset to the state which it started in, it is

possible to find both the probabilities and expected time to reach these states.

To find the probabilities that the system hits one of those states before the other

three, we will divide the probability of that state by the sum of the probabilities of

all four states. To find the expected time to reach that state, we will do

calculations analogous to those leading to Equation 4.4. This will give us the

results in Table 4.6.
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00~ and 01~ are the only states in the table where the system

failed. Thus, we are interested in where the system can go

states. From 00~, the system can go to111, 100, 010, 000, with

has not already

from those two

probabilities:

State

001

011

Probability

dol =
%31

1 – dll

Hours to Reach that State

-[.1
t;ol= ‘ –1t;,,+t:ol

I–q:ll - -

[1
t:o,= ‘ –1t;,,+tgol1–q:,, -

-[1t:,,= ‘ –1 t;,,+ t;,,
I–q;l, - -

[1
t;,,= ‘ –1t;,,+t;,,1–q;,, -

Table 4.6 States and Transition Probabilities for a 3 Component System

P
111/001

= Pti, ,hrough~11,~1 + PI,, ,hrough,01,~1.---

TRITF~ T
P

R1

0101001 = TRIT~a+ T~2T~~+ TR1T~2T~l + T~a

(4.12a)

(4.12c)
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P
TR1TR2

000[001 = TR1TF3+ TR2TF3 + TR1TR2.

From 01~ the system can goto~11 or 010 with probabilities:

T
P

F3

111[011 = TF3 +T
R1

and

T
P

R1

010/011 = TF3 +T
RI

(4.12d)

(4.13)

(4.14)

Thus, if we wait until the either the third component has failed or its switch has

failed, then the possible states are as shown in Table 4.7.

When the system fails, it can be in 000, 001, 010, 011, or 100. For these five

possible states, we have the transition probabilities shown in Table 4.8.

Now, the expected time until the system fails will be

(4.15)

From each of these 5 states we can calculate the average repair time to go from

the failed state to state ~11 using Equation (3.19). Given that the system fails,

the probability of being in each of these 5 states is the conditional probability for

the state. For example, qs~ is the probability of being in state 000 when the

system fails, given that it fails. The expected time to repair the system is then

the sum of the five products of conditional probability and average repair time.

Comparison of results calculated using the approach above with Markov

analysis results are shown in Table 4.9 for the following case:

‘FA = 300 hr ‘RA = 15 hr

‘FB = 1000 hr ‘RB =20 hr pB = 0.01

‘FC = 700 hr ‘RC =5 hr p~ = 0.05



Table 4.7 States and Transition Probabilities for a 3 Component System
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State

000

001

010

E
011

100

Probability

%10 =
qk

1 – q:ll

q;l
dol =

1 – dll

dlo
dlo =

I – dll

dll
dll = , _ q:,,

Hours to Reach that State

[.1
p= 1 –1t:,,+t~1–q:,, -

[.1Q, = ‘ –1 t:,,+ t&
1 – q;,, -

[1
t:lo= ‘ –1t:,,+t:lo1–q:,, -

t:,, = [1
1 –1t;,,+t41–q:,, -

011

[1
fm= ‘ –1t:,,+t~1–q:,, -

Table 4.8 States and Transition Probabilities for a 3 Component System

Calculated Markov Analysis

Availability 0.99987 0.99987

System MTBF (TFs) 162406 hr 162406 hr

System MITR (TRs) 21.2 hr 21.2 hr

Table 4.9 Comparison for Three Components in Parallel, Standby with

Repair.

As in the case of two components, standby with repair, the case of 3

components shows excellent comparison with Markov analysis.

We have only presented the algorithm for standby with repair for the cases of

two and three components in parallel. However, a general algorithm for standby

with repair has been developed and is described in Appendix A.
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Chapter 5

STANDBY WITHOUT REPAIR

In this treatment of redundancy, only one of the redundant components is

assumed to be active with others held in standby. In case the active component

fails, a standby component can be switched on either manually or automatically.

Failed components are not repaired until all have failed and the system is down.

The MTTF of the system of 1 component active with N -1 standby without repair

is just the sum of the individual MTBF’s of the ,components accounting for the

probability of switch failure. That is

T~~= TI + ~(l-pi)T~i
i=2N .

(5.1)

No repairs are performed until all standby components or their switches have

failed. Therefore, the MTTR for the system is calculated similarly as for N active

without repair. Let P,(t) be the probability that component 1 is repaired (not

failed) at time t and Pz(t) is defined similarly. Then from Equation (3.8),

TR~= ~[1- QR,(OQR20)] dt. (5.2)
o

In words, the mean time to repair the parallel components is the integral over

time of the probability that at least one component is not repaired. Recall that if

a component is not operable, it could be because the component itself failed or

its switch failed. If the component is unavailable because of switch failure, then

the component doesn’t need to be repaired. Assuming a constant repair rate (let

w denote repair rate), then

T~S‘7{1-[P1+(l-P1)(l-e-’’’)][P2 +(1-p2)(l-e-’’)]]dtdt
o

(5.3)

,-
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where pl and p2 are the probabilities of switch failure to components 1 and 2.

Note that (PI = O). Equation 5.3 can be rewritten as

[ {[
T~~ =7 1- l-(l-pl)e-’”t

o
][4-P2)J’2t]}]dt.

From Equation (3.1 O), we see that the solution to Equation (5.4) is

T _(l-P,)+(l-PJ (l-PI)(l-P,)—
RS– .

P, v~ 1+ + P*

By the same arguments that lead to Equation (3.19), we can show that

_l)(lW)

.

(5.4)

(5.5)

(5.6)

where pl = O.

The comparison calculations that were petformed earlier for standby with repair

are repeated here for standby without repair. The case for two components

follows.

‘FA = 200 hr ‘RA =10 hr

TFB = 500 hr TR~ = 20 hr p~ = 0.01

Calculated Markov Analysis

Availability 0.9677 0.9677

System MTBF (TFs) 695 hr 695 hr

System MITR (TRs) 23.2 hr 23.2 hr

Table 5.1 Comparison for Two Components in Parallel, Standby without

Repair.

Table 5.2 shows comparison results for 3 in parallel, standby without repair, with

the following properties
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T~~ = 300 hr ‘RA =15 hr

‘FB = 1000 hr ‘RB =20 hr p~ = 0.01

‘FC = 700 hr ‘RC =5 hr p~ = 0.05

Calculated Markov Analysis

Availability 0.9865 0.9865

System MTBF (TFs) 1955 hr 1955 hr

System MTTR (TRs) 26.7 hr 26.7 hr

Table 5.2 Comparison for Three Components in Parallel, Standby without

Repair.

For both cases, the Equations (5. 1) and (5.6) provide excellent agreement with

Markov analysis results.

Standby Redundancy in Non-Repairable Systems

With standby redundancy, we consider a single active component with 1 or more

(not necessarily identical) components available in standby. In case the active

component fails, the system switches either manually or automatically to a

standby component. In general, there is a non-zero probability that the

switching mechanism will not be successful in activating the standby component.

If there is more than one standby component available, component failure (either

the component itself or its activation mechanism) will cause the system to switch

to the next available standby component. Standby redundancy is fairly common

in electrical and electronic systems. For example, many home security systems

have a standby battery available in case of failure of the external power supply.

One Acfive and One Standby Component

We begin by considering a system consisting of one active component with one

component in standby ready to be activated if the active component fails. Let p2

be the probability that the standby component fails to activate on demand.

Assume that the two components have constant failure rates Xl and k2. The

probability of successful operation over some mission time T for the system is

the sum of the probabilities of two mutually exclusive events. That is
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R~ =Probability that componentl operates successfully over

time T

+ probability that component 1 fails before T and

component 2 operates successfully for the remainder of T

Rs = RI + ~ e-k’’il(l - Pz)e-’2(T-t)dt
o

(5.7)

where

RI is the probability of successful operation of component 1 over the

mission time T,

e-~’tkldt is the probability that component 1 survives to time t (e-k”) then

fails during interval dt (Ltdt),

1- P2 is the probability that component 2 is successfully activated, and

e ‘12(T-’) is the probability that component 2 operates successfully from t

until T.

Then

-A2T T (A,-kl)tdt
R. =Rl+kl(l-p,)e Je

o (5.8)

Performing the integral in Equation (5,8) gives

R~=Rt+ ‘1 (1 - p,)e-a~T(eI’Z-’,)T _ 1)
L2 - Al

R~ =R1+ “ (1 - p,)(R, - R,), & * k,
k2 - k, (5.9)

For the case of perfect switching (p2 = O),

R~ = “R’ + “R* ,k1#k2, p2=o
L* -?&l L1-?b’

(5.10)
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where R1 = e-k’T.

Equation (5. 10) is clearly only valid if k, z ~. Using Equation (3.5), we can

calculate the mean time to failure as

T, = ~R(t)dt
o

T~=~+ ‘1
()

(1-p,) :-;
A, & - k, 2

‘-?X1*X2T~=; +—
1 kz (5.11)

Equation (5. 11) is the same as Equation (5.1) applied to two components and is

easily interpreted. The mean time to first failure of the redundant system

consisting of component 1 with component 2 in standby is the MTTF of

component 1 plus the MTTF of component 2 weighted by the probability of

component 2 being successfully activated.

In case the two components have the same failure rates, we need to return to

Equation (5.8) to determine the reliability, Let k, = ~ = 1. Then

R, = e-” + A(1 - p2)~dt
o

R, = e-’T[l + AT(1 - pz)], k, = & = k

In this case the mean time to failure is

T,= ~e-kT[l + M(1 - pz)]dt
o

(5.12)

(5.13)

(5.14)
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T =2-P2
F k1=k2=k

A’
(5.15)

One Active and Two Standbv Components

We now consider the case of one active component with two in standby. If

component 1 fails, component 2 is switched on. If component 2 fails, component

3 is switched on. The probabilities of failing to successfully activate components

2 and 3 are pz and p~. We begin with the case 1, # ~ # h~. ‘“ ‘“ ‘ ““’ -“’

system is the sum of the probabilities of the following 4

events:

1. Component 1 operates successfully for the entire mission

I ne reuar.xlny01me

mutually exclusive

time T.

2. Component 1 fails at t < T, component 2 is successfully activated and

operates for the remainder of the mission time,

3. Component 1 fails at t ~ T, component 2 fails to activate, component 3 is

successfully activated and operates for the remainder of the mission time.

4. Component 1 fails at t’ < T, component 2 is successfully activated and

operates until time t (t’ < t < T), component 3 is successfully activated and

operates for the remainder of the mission time.

In equation form,

R~ = e-X’T + ~ e-xll~, (1 - p, )e-k2(T-tldt

o

+ ~ e-~’tklpz (1 – p~ )e-L’(T-t)dt

+ jje-~%(1 - P2)e-A2(’-’’)~2(7 - P3)e-A3(T-’)dtdt’
o r

(5.16)
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Rearranging terms and performing integrals, we get

R~ = e-AtT+ L,(1 – pz )e-x2T
[e-:-~i’)

[e-:-~<’l
+ ‘1P2(1 - p~)e-k’T (5.17)

(
~-(a3-A,)T _ ~-(A3-A2)t’

)
+ L,(1 – p2)kz(l – p~)e-k’T ~e-(k’-~’)r dt

o A3 - A2

Finally,

[)R. =R1 +Al(l -p,) ;1 ‘R2
~-L1

()

RI -R,
‘klp2(q–p3) ~

~-l,

[

&k2(l-p, )(l-P, ) RI-R, RI-RS ,k ~Z ~1
+

L3 - A2 )A2-kl-k3-kl ‘ 2 3

For perfect switching (p2 = p~ = O), Equation (5.18) becomes

where Ri = e-k’T.

(5.18)

(5.19)

In case two or more of the parallel components have the same failure rates, we

can readily derive equations for the system reliability beginning with Equation

(5. 16). Equations for the various combinations of equal failure rates are given

below.
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R
R. = Rl, + L1,,TR1,2(1- P,)+ ~lZPZ(l - PS) ~“’~~’

L,=~=k,,2#k3
3 1,2

[

A.:,,(1 - p2)(l - P,) R T R,,, -R, 1 (5.20)
+ 1,2 –

RI = R2 = R1,2 k’ - k,,’ L3 - k,,’

[1
R13-R,

R~ =R1,3 + &,, (l-P2) ~’ + ‘l,3p2(1 – p’ )RI,3T
‘ – At’

L, =k~= kq,3 # L2

[

L13A2(l–p2)(l-P3) R1~–R2 _R T

1
(5.21)

+
RI = R3= R1,~ L1,3– A’ L2 - A1,3 ‘3

k,#~=L3=~,3

[1
RI - Rz~

[1

RI - R2~
R~=R, +L,(l -P,) ~ _~ +~lp,(l-p,) ~ _k

23 1 23 1

R~ = R3 ~ R2,3
A1L23(1- p,)(l - p3)~ ~ (5.22)+

A - Al 23
23

k,=~=k3=L RS =R+k(l- p2)RT+@2(l-P3)RT

R,= R2=R3=R
+ X2T2

~(l-p,)( l-p’)
(5.23)

One Active and N- 1 Standby Components

We can now develop the general case (1 active component and N-1 in standby)

for unequal failure rates. Initially component 1 (Cl) is active and C2, C3, .... CN

are on sequential standby. Let

pi= probability that the switch to component Ci fails, PI = O

Xi = the (constant) failure rate for component Ci, and

T = the mission time.

Find the reliability over time T.

There are several ways the configuration can survive over T. For example, Cl

can survive the entire mission time. Or Cl can fail prior to-T, the switch to the C2

can fail, the switch to C3 can operate, and C3 survives the remainder of the
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mission time T. We will determine all possible ways the configuration can

survive, find the probability of each, and find the sum of all the probabilities.

Let S be the union of the set {Cl} and any subset of {Cz, C~, ... C~} and let L be

the index of the last component in S (the component with the largest index).

Given the following interpretation of S, S represents a combination of

occurrences that enables the configuration to survive to time T;

. Each component Cj in S, j c L, is sequentially accessed and then fails

during time T

. Component CL is accessed last and survives the time remaining to T.

A natural outcome of this formulation is that the switch to component Cj operates

for each Cj in S, j >1. If there are components with index less than L that are

not in the set S, they were not accessed, so we conclude that their switches

failed.

The probability (P~) that the configuration survives to time T through the path

defined by set S, is found for each possible set S. Since all paths defined by

the sets S are mutually exclusive, the reliability of the configuration, R, is then

found by summing over all possible sets S.

(5.24)

The remaining problem is to find P~, Define any sequence of times

o =to<t,<. ..<tn

where n is the number of components in S.

survived from to to t,, S2 survived from tl to t2, ... .

where Sk is used to denote component k of set S.

=T

Suppose that component S1

and Sn survived from tn., to tn,

Since the failure rate for each

component is assumed to be constant, the probability that component k survives

over time interval t~ - t~.q and then fails during infinitesimal time dt~ about t~ is

e-&(t~-t~.,)~ dt
kk (5.25)
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Note that for k = n, the factor Lk dtk does not appear since the last component

does not fail prior to time T. The probability of S can be found by summing over

all possible time sequences. That is, form the nested integral of the product of

the above factors and integrate sequentially over (O, tz), (O, ta), ... ,(0, T).

From the integrand we can factor out the failure rates and combine their product

with the appropriate product of switch failure probabilities. The resulting factor

appears outside the integral and has the form

~Lj~(l-Pj)~Pk (5.26)i6S ja k#3
i<L k<L

The first product is over all components in S except that i < L (the largest

component index in S). The second product is over all components in S

indicating that, by definition, there is no switch failure for components in the set.

The third product is over all components not in S with index < L indicating that

these components are assumed not in S because of switch failure.

The integral can be solved analytically. The only complication is the

singularities. Factoring out e-%T = Rn, we are left with the product

e ‘(k,-k,)t,d~le-(b-b )t2dt2 -..#m-rkn)tn-ldtn_l

potential for

(5.27)

If all the Xi are distinct, then integrating the above expression over (O, tz), (O, t~),

.... (O, T) yields

~ ~(k~’- ‘j)
k.#S
k#j

(5.28)

Finally,

(5.29)
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From Equations (5.24) and (5.29), we can now write the equation for the

reliability of a system consisting of 1 active component with N - 1 in standby.

That is

‘=Tps=Tl~’iQ‘530)
For the case of different failure rates and perfect switching we can write the

general equation beginning with Equations (5. 10) and (5. 19),

(5.31)

k=l
k*i

Finally, we consider the case of perfect switching with all failure rates equal for

one active component and N-1 components in standby. In this case, the

probability of successful operation over a mission time T is the sum of the

probability of N mutually exclusive events.

1.

2.

3.

Component 1 operates successfully for the entire mission time T.

Component 1 fails at t < T, component 2 operates for the remainder of the

mission time.

Component 1 fails at t’ <T, component 2 operates from t’ until t then fails (Os

t’ < t < T), component 3 is activated and operates for the remainder of the

mission time.
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We can write the equation for these events as follows

TT
RS = e-AT + ~ e-At~e-~T-t)dt+

H
e-Wke-k(%e-L(T-t)dt dt’ +

o or
TTT

+
HJ

e-At” ~e-A(t’-t’’)~MtMt-)’) ~e-A(T-t)
dt dt’dt’ ‘ +. . .

(5.32)

Ot”t’

R. = R~ ~-’TL’
~, (l-l)!

(5.33)

where O! = 1.
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Chapter 6

R OF N REDUNDANCY WITH REPAIR

In this redundancy treatment, the system has N components in parallel with R (1

< R < N) required for success. If a component fails, we assume it is repaired

while the remaining N -1 continue to operate. First, consider a simple example

of 3 of 4 redundancy (Figure 6.1 ).

3 of 4 Required

for Success

Figure 6.1 4 Components in Parallel, 3 Required for Success

Since three components are required for success, failure of any two components

will cause the system to fail. Therefore, the cut sets are

AB, AC, AD, BC, BD, CD.

Thus, the system can be treated as shown in Figure 6.2.

A B B

D c D

Figure 6.2 3 of 4 Redundancy as a Series Arrangement

In effect, 3 of 4 redundancy becomes a series system consisting of all possible

combinations of 2 components in parallel. Failure of any 2 components causes
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the system to fail. In general, R of N redundancy (active with repair) can be

treated as N!/{(N-R+l )!(R-l )!} cut sets representing all possible combinations of

(N-R+ I ) terms. The failure rate (l/MTBF)for each cut set can be calculated

using Equation (2.23). Failure rates can then be added for all cut sets to get a

total failure rate for the parallel system. The MTBF for the parallel system is

then the inverse of the system failure rate. MTTR for each cut set can be

calculated using Equation (2.24). The MTTR for the parallel system is

calculated using the following equation

x L+.,

T
i=l&

RS =
~ kc,

i=l&

(6.1)

where Nc is the number of cut sets, Lci is the failure rate for the ith cut set, and

T~ci is the MTTR for cut set i. Whereas the other redundancy treatments are

exact when compared to Markov analysis for comparable assumptions, the

approach presented here for R of N with repair is an approximation. It can be

shown that this approximation is accurate so long as the repair time is small

compared to the MTBF for individual components in the parallel arrangement.

Specifically, if T~i <0.1 x TFi, the results predicted Equation (6.1) for R of N

redundancy with repair should be accurate to 10OA or better.

Comparisons between Equation (6.1 ) for R of N redundancy with repair and

Markov analysis were performed for 2 of 3 and 2 of 4 redundancy. The 2 of 3

case had the following component properties:

T~A = 500 hr T~~ = 20 hr

‘FB = 1500 hr T~B =10 hr

T~c = 1000 hr T~c =15 hr

Results of the comparison are shown in Table 6.1.

Calculated Markov”Analysis

Availability .9991 .9991

System MTBF (TFs) 8273 hr 8382 hr

System MTTR (TRs) 7.62 hr 7.63 hr

Table 6.1 Comparison for Two of Three Redundancy with Repair
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For both the MTBF and M7TR, the accuracy of the approximation is quite

acceptable.

The 3 of 4 case used the following component properties:

T~~ = 500 hr T~~ = 20 hr

‘FB = 1500 hr ‘RB =10 hr

‘FC = 1000 hr ‘RC = 15 hr

TF~ = 2000 hr ‘RD =30 hr

Results of the comparison are shown in Table 6.2.

Calculated Markov Analysis

Availability .99998 .99998

System MTBF (TFs) 3.27E5 hr 3.32E5 hr

System MTTR (TRs) 5.7 hr 5.7 hr

Table 6.2 Comparison for Three of Four Redundancy with Repair

The calculated MTBF for 3 of 4 redundancy is accurate to 1.5% and the MTTR is

accurate to two significant digits.
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Chapter 7

R OF N REDUNDANCY WITHOUT
REPAIR

For this case, the system will have N components. R of those components must

be working for the system to be operable. Once there are less than R

components working, the system will no longer be operable. Then it will be

turned off until all of the components have been repaired.

Three Parallel Components, Two Required, without Repair

Since the case R = 1 has been accounted for in Chapter 3, two of three

redundancy is the simplest example of R of N redundancy. The approach to

finding mean time to failure is comprised of two steps. First, develop an

expression for the probability that the system survives to an arbitrary time t.

Second, since that expression is equivalent to the cumulative probability that the

time to fail the system (T~) exceeds t, integrate the expression from zero to

infinity to find the mean time to fail the system (MTTF or T~).

For this example, the system survives to time t if at least two components are

operable at time t. There are four possible combinations of components working

and not working that have at least two operating components. It is helpful to

represent these combinations as subsets of the set {A, B, C}. If a component is

in the subset, the component is working. Thus, of the eight possible subsets,

subsets {A, B}, {A, C}, {B, C}, and {A, B, C} represent the system working.

The probabilities for each subset are found from

P{A,B} = e-k’’e-’’t(l - e-kc’ )

P{A, C] = e-x’’e-xct (1 - e-k” )
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P{B, C} = e-k’’e-’ct(l - e-AA’)

P{A, B, C} = e-~”te-k~te-kct

Combining terms gives

P(TF > t) = e-aAte-%t + e-kA’e-ACt + e-%te-kt _ Ze-h’e-k.te-k.t ,
(7.1)

Integrating P(TF > t) on t from zero to infinity gives the mean time to fail the

system.

T~= 1
1 1 2

AA + LB ‘A A+kc+kB +kc-kA+AB+kc .
(7.2)

The mean time to repair the system (T~) depends on which components require

repair and their repair times. If we know the combination of component failures

that caused the system to fail, the resulting average repair time for the

combination can be found using Equation (3.19). Suppose that the redundant

arrangement fails because A and B fail. Then, let J = {C} be the subset of

components that operated successfully. The complement of J (Jc = {A, B}) is the

failed subset. Denote T~s of Equation (3.19) as E(T~lJc), the expected repair

time of the components that have failed. We find T~ as the expected time to

repair the system:

( )T~= ~ ET~ J’ P(J)

Js{w}
Iq=l

(7.3)

where the sum is over all subsets J of {A, B, C} such that failure of JCcauses the

system to fail and IJI is the number of components in the subset. For two of

three redundancy, the subsets of interest are those having one component, i. e.,

cases where two components have failed. Note that we do not include the case

where all three fail since the system goes down as soon as two fail and the

probability of two or three failing simultaneously is vanishingly small.
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The subset {A} represents the event where A is operating but both B and C have

failed at time t. P({A}) is found as the sum of probabilities of two mutually

exclusive events determined from which component failed last:

1. A is operating at t, B failed prior to t, C fails at t, and

2. A is operating at t, B fails at t, C failed prior to t.

The first event has probability

U3

J( )e-aA~ 1 _ e-LBt e-ACt ~Cdt

o .

The second event has probability

w -kAt~( -Ict)-kBt
e l-e e h~dt.

o

Integrating and adding the probabilities yields,

By similar arguments, we get

(7.4)

(7.5)

(7.6)

Note that in Equations (7.4) - (7.6) the failure rate for the surviving component

appears in each term in the denominator. The numerators, and the other failure

rates in the denominators, are represented by all nonempty subsets of the set of

failed components. The sign of each term depends on the size of the subset; if

the size is odd, the sign is positive and vice versa.
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Comparisons between the above treatment of R of N redundancy without repair

(Equations 7.2 and 7.3) and Markov analysis were performed for 2 of 3

redundancy. The 2 of 3 case had the following component properties:

‘FA = 500 hr ‘RA =20 hr

‘FB = 1500 hr ‘RB =10 hr

‘FC = 1000 hr ‘RC =15 hr

Results of the comparison are shown in Table 7.1.

Calculated Markov Analysis

Availability .9690 .9690

System MTBF (TFs) 763 hr 763 hr

Svstem MTTR (TRs) 24.4 hr 24.4 hr

Table 7.1 Comparison for Two of Three Redundancy without Repair

Four Parallel Components, Two Required, without Repair

Before generalizing the treatment of R of N redundancy, it is useful to do another

special case. Consider a parallel system consisting of the four active

components {A, B, C, D} with two required for successful operation. Then the

probability that the configuration operates successfully to time t (the reliability of

the system over tirhe t) is the sum of the probabilities of the following 11 mutually

exclusive events:

1. Components A and B fail before

successfully for the entire time t.

2. Components A and C fail before

successfully for the entire time t.

3. Components A and D fail before

successfully for the entire time t.

4. Components B and C fail before

successfully for the entire time t.

t and components C and D operate

t and components B and D operate

t and components B and C operate

t and components A and D operate
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5.

6.

7.

8.

9.

Components B and D fail before t and components A and C operate

successfully for the entire time t.

Components C and D fail before t and components A and B operate

successfully for the entire time t.

Component A fails before t and components B, C and D operate successfully

for the entire time t.

Component B fails before t and components A, C, and D operate successfully

for the entire time t.

Component C fails before t and components A, B, and D operate successfully

for the entire time t.

10. Component D fails before t and components A, B, and C operate successfully

for the entire time t.

11 .All four components operate successfully overtime t.

Thus, the equation for the reliability over time t of the redundant system, Rs, can

be written in terms of the reliabilities (Ri = e-~t) and unreliabilities (1 - Ri) over

time t for each component i = {A, B, C, D}.

R~ = (1 -RA)(I -R~)RcR~ +(1 -R~)R~(l -Rc)R~

+(l-R~)~Rc(l -~)+ R~(l-R~)(f-Rc)RD

()()+RA(l– R~)Rc(l– RD)+R~RB I–Rc l–RD

( -RB)RCRD +RARB(l-RC)RD+(1 – RA )RBRCRD + RA 1

+ R~RBRc(l - ~)+ RARBRcR~

Expanding the products and combining terms yields,

R~ = RARB +R~Rc + R~~ + RBRC+ RBRD+ RCRD

- 2RARBRC- 2RARB~ - 2RARc~ - 2RBRCRD

+ 3RARBRCRD

(7.7)

(7.8)
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Integrating R~ on t from zero to infinity gives the mean time to fail the system.

2 2 — 2 —

(7.9)

Failure rates are added for each subset of {A, B, C, D} of size k > R = 2 in the

denominators of Equation (7.9) and the sign of each term depends on k; if k is

even, the sign is positive and vice versa. The coefficient of each term is the

combination of k -1 taken k - R at a time.

The mean time to repair the system (TR) depends on which components require

repair and their repair times, For each combination of component failures that

cause the system to fail, we use Equation (3.19) to find the resulting average

repair time. We need only to weight the repair times by the probability that the

combination causes the system to fail. Consider the event {D}. In the

terminology used in the 2 of 3 case, {D} is the event that component D survives

to time t, whereas the components in the complement of {D} ({A, B, C}) all fail,

causing the system to fail. Recalling the approach to Equations (7.4) - (7.6), we

find the probability for the three cases in which components A, B, and C are the

last to fail, and combine results. We can write:

(7,10)

Note that in Equation (7.1 O) the failure rate for the surviving component {D}

appears in each term in the denominator. The numerators, and the other failure

rates in the denominators, are represented by all nonempty subsets of the set of
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failed components {A, B, C}. The sign of each term depends on the size of the

subset; if the size is odd, the sign is positive and vice versa.

Each of the other 3 events where three components fail and the other survives

have probabilities identical in form to that of Equation (7.10). Moreover, those

are the only events that need be considered when finding repair times. That is,

as soon as three fail, the system is shut down. The probability that two or more

components fail simultaneously is vanishingly small and need not be treated.

N Parallel Components, R Required, without Repair

For the general case, the probability that the system is operable at time t is the

sum of the probabilities of each state which has at least R components working

at time t. That is

P.(t) = ~ ~P(J~(Jc) (7,11)
k=R dl~=k

where IJI is the number of components in the set J (thus the second summation

is over all sets of k components), P(J) is the probability that the k components of

J are all operable at time t, and P(Jc) probability that the N - k components not in

J have all failed by time t.

P(J) is the product of’the reliabilities over time t (e-~jt) of components i in set J

and P(Jc) is the product of the unreliabilities over time t (1 - e-hit) for the

components i not in J. Thus, Equation (7.11) can be easily implemented in its

current form to calculate the reliability of the R of N configuration over time t.

However, Equation (7. 11) must be integrated on t to find the mean time to fail.

To do the integration, the product defining P(Jc) in the integrand must be

expanded. As in the 2 of 3 and 2 of 4 cases above, we do the expansion and

collect like terms a priori. The collected terms can be counted using a simple

combination, and Equation (7. 11) can be written in the form:
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()
-~k,,t

P.(t) = P(TF > t) = $ ~(-l)(k=) ~~~ e ‘=1 ‘ . (7.12)

k=R JIJl=k

Proof of the form for Equation (7.12) for general R and N can be found in

Appendix B. Since TF is non-negative, the mean time to fail is found by

integrating over all non-negative t.

MTTF = ~P(T~ > t)dt
t=o

(7.13)

The system is repaired as soon as it fails, as soon as there are less than R

components working. [f we let D = N - R + 1, this is equivalent to waiting until D

components are down, and then repairing those D components. Let EJ be the

event that the components in J are the first D components to fail, then

MTTR = ~E(TRIEJ)P(EJ) . (7.14)

qJ=D

E(TRIEJ) can be calculated using the appropriate form of Equation (3.19) since

all failed components are repaired. P(EJ) is the probability that the components

in J are the first D components to fail. To find P(EJ) take the sum as i goes

through the components in J of the probability that i is the last component in J to

fail and that i fails before any component which is not in J. This is
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4=’’1:1--’+’)~-’m’le‘(EJ) = S 7 ~,(q e
(7.15)

The first product in the integrand is the probability that all components in J

(except i) have failed prior to time t. The second product is the probability that

those components notinJ are still operable attimet. The Iast factor is the

probability that component i fails at time t. Once the first product is expanded,

the integration is straightforward.

We expand the first product and integrate, then sum over all components i of J.

In doing so, several terms that have the same denominator are combined. To

write down the final result, we introduce the following notation. Let a be a

nonempty subset of J of size Ial and let Lak denote the failure rate for component

kin subset a. Then

(7.16)

Equation (7.16) follows the pattern established in the 2 of 3 case and in the 2 of

4 case, see Equations (7.4)-(7.6) and (7.1 O) above. That is, failure rates for the

surviving components appear in each denominator. Each numerator and the

rest of each denominator are represented by the nonempty subsets of the set of

failed components. The sign of each ratio depends on the size of the subset; if

Ial is odd, the sign is positive, and vice versa.

Comparisons between the RAMP treatment of R of N redundancy without repair

(Equations (7.13) and (7.14)) and Markov analysis were performed for 2 of 4

redundancy. This case used the following component properties:

T~~ = 500 hr T~A = 20 hr

T~B = 1500 hr ‘RB =10 hr

‘FC = 1000 hr TRC =15 hr

‘FD = 2000 hr ‘RD =30 hr

Results of the comparison are shown in Table 7.2.
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Calculated Markov Analysis

Availability .9735 .9735

System MTBF (TFs) 1280 hr 1280 hr

System MTTR (TRs) 34.8 hr 34.8 hr

Table 7.2 Comparison for Three of Four Redundancy without Repair

The agreement between the RAMP treatment and Markov analysis is exact.

R of N Redundancy in Non-Repairable Systems

The reliability over some mission time T of an R of N redundancy configuration

in a non-repairable system is found by substituting T for t in Equation (7.12)

above. We also note that the exponential term in Equation (7.12) is the product

of component reliabilities over time T. We therefore write:

(7.17)
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Chapter 8

CONCLUSIONS

In this report, we have developed equations for the equivalent (average) failure

rates and repair times of the following six redundancy treatments:

Active with Reoa~r All parallel components are active with only one needed

for success. A failed component can be repaired while the system continues

to operate on other parallel components.

Active without Repair All parallel components are active with only one

needed for success. Failed components are not repaired until all parallel

components have failed. Then all are repaired.

Sfar?dbv with Re~air Only one of the redundant components is active with

others held in standby. In case the active component fails, a standby

component can be switched on either manually or automatically. The failed

component is repaired while the system operates using a standby

component.

Standby without Remir Only one of the redundant components is active

with others held in standby. In case the active component fails, a standby

component can be switched on either manually or automatically. The failed

component is not repaired until all redundant components have failed.

R of N with l?e~air The system consists of N components of which R (1 < R

< N) are required for success. For example, if a car wheel has 5 lug nuts

and 4 are considered necessary for safe operation, the lug nuts provide 4 of

5 redundancy. Failed components are repaired while the system operates.
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R of N without l?e~air The system consists of N components of which R (1 <

R< N)arerequired for success. Failed components are not repaired until

more than N - R have failed and the system cannot operate.

These options are currently being implemented in RAMP 2.0 which will be

released in 1993.

A Markov analysis program was developed for the above redundancy options

prior to development of the equations presented in Chapters 2 through 7. While

the Markov code proved too expensive for use in RAMP in terms of computer

memory and processing time, it did provide an independent basis for evaluating

the accuracy of the redundancy equations. A few comparison calculations have

been presented in this report. For active with and without repair, standby with

and without repair, and R of N without repair, the comparisons between the

equations developed here and Markov analysis was exact. The treatment of R

of N with repair is an approximation that compares with Markov analysis to 10%

or better so long as component repair times are no larger than about one tenth

of component mean times between failures. In addition, an extensive suite of

test calculations has been performed with similar results to those presented in

this document.

While the purpose of this document is to present the theoretical basis for the

redundancy analysis in RAMP 2.0 rather than offering design guidance on

appropriate redundancy treatments, it is interesting to compare active and

standby redundancy options. To generate these, we considered two

components in parallel with equal MTBFs and repair times. In each case, the

repair time for each component was assumed to be 10 hours while the MTBF

was varied from O to 400 hours. Figure 8.1 shows that standby redundancy with

repair is most effective for this simple case in terms of the MTBF of the parallel

system whereas active without repair is the least effective. The results shown

graphically in Figure 8.1 are also presented in Table 8.1.
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o 100 Zm 200

Component MTBF (Hours)

Figure 8.1 MTBF for Parallel Components with Different Redundancy

Treatments

<
Component Active Active Standby Standby

MTBF With Without With Without

Repair Repair Repair Repair

100 600 150 1200 200

200 2200 300 4400 400

300 4800 450 9600 600

400 8400 600 16800 800

Table 8.1 MTBF of Parallel Components with Different Redundancy

Treatments

It is clear that redundancy can, in some circumstances, provide considerable

improvements in system reliability, particularly if the equipment can be designed

to allow repair of a failed redundant component while the system remains

operable. With RAMP 2.0, the design engineer will be able to evaluate such

options easily.
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Appendix A

ALGORITHM FOR STANDBY WITH
REPAIR

A state of the standby-with-repair parallel system is determined by the following:

. Which components are operable. Note that a component can be operable

but not actually operating.

. Whether the system is up or down.

● If the system is up, which component is working.

We will refer to the state where all of the components are operable, the system

is up, and the first component is working as the beginning state.

We will order the states so that from any state, the system can only go to later

states or the beginning state. This can be done by making sure that the ordering

satisfies the following two conditions:

1. If i <j, then any state in which component i is working will come before any

state in which component j is working.

2. If the same component is working in two states, and a different number of

components are operable in each of the two states, then the state with fewer

operable components will come first.

Any order which satisfies both of these conditions will serve our purposes.

Thus, in the flowchart and the psuedo-code, we do not specify one. In the actual

code, we use a convenient, but otherwise arbitrary order which satisfies both

conditions.

The system will start in the beginning state, Once the first component fails, the

system will go to one of the states where all of the other components are
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operable. We will calculate the probability of the system going to each of these

states and the expected amount of time that will transpire before the first

component fails and the system makes the transition. We will then work our way

through all of the other possible states. As we go through each state, we will

consider where the system can go from that state and how long it will take to get

there. Eventually, we will go through all of the sets where the system is up, and

we will know the probability of being in each down state when the system fails

and how long we would expect it to take for the system to get there.

Let i go from 2 to the number of components in the parallel system. Then, for

each value of i, we will go let j go from O to (i-2). We will consider all of the

states in which component i is working and j of the components before

component i are operable.

We will look at where the system can go from these states and how long it will

take for the system to go to these places. Once we have done this for one value

of j, we will have exhausted all of the ways that the system can go to a state in

which (j+l ) of the components before component i are operable. Thus, we can

now consider the next value of j, and consider where those states will go.

The last value of j was (i-2). From the corresponding states, the system could go

to the beginning state. Thus, when we have exhausted all of the states in which

component i was working, there will be some probability that the system returned

to the beginning state, (We will let p refer to 1 - the probability of the system

returning to the beginning state. ) If this had happened, the system would have

started over and continued starting over until it found some other state at this

point. Thus, we will divide the probability of being in each other possible state

by p. Since going to the beginning state and starting over will take time, we will

add (l/p -1 ) Q the time to reach the beginning state to the times to reach each

of the other states.

We will now have, conditioned on the event that the system is in the first state

where none of the first i components are working, the probability of being in each

possible state and the expected time for the system to reach that state. We will

now use the next value of i, and consider all of the states where that component

is working.
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After we have gone through all of the possible states where the system is up, we

will have, conditioned on the system being in the first state where the system is

down, the probabilities of the system being in each possible (down) state. We

also know the expected time for the system to reach each of these down states,

conditioned on that state being the first down state which the system has

reached.

We can use this information to find the expected time until the system is in its

first down state (or fails). We can also calculate the time to repair the system

from each down state, and thus find the expected time to repair the system once

it fails.

Flow charts for this algorithm follow.
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Find eachstatethat the system can go to when the first
component fails. Find the probability of going to each of these

states, and the expected time to reach each state.

1

I i = 2 (i will be the component working) I
I

I

~

Let k go through all of the states in which j of
the first (i -1) components are operable, all of
the components after (1-1) are operable, and

17-e--l
Go to next

JN

~’
Let k go through all of the states in which j + 1
of the first (i -1) components are operable, all
of the components after (1 1) are operable,

1

I Bl( 1t
Go to next
such state

Yes

<i<N?~

S21
o

D

Done

Figure A.1 Flowchart of the Algorithm
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Let m go through the
states which the system can go to if

Let the probability of being in m be the
product of the probability of being in
state k and the probability of going fron
state k to state m.

Go to the next
Let the time to reach state m be the tire{! state which the
to reach state k + the time to go from the system can
state k to state m. go to if

component
i fails.

go to if component

Figure A.2 Subchart A
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Let two be the product of one and the expec

I

Let m go through all of the
components which are operable in state k

I
Let h be the same as state k, except that in <
state h, component m is not operable

I

Let q be the product of the probability of bei g
in state h and the probability of going from t’
state h to state k I

I

GLet two = two+ the product of q and (the
expected time to reach state h + the
expected time to go from state h to state k)

I Let one = one+ q I

A

1
Go to the next
component whit
is operable
in state k.
~,

Yes

The probability of being in state k is one

The expected time to reach state k is twolon e

I
Done I

Figure A.3 Subchart B



Let p be 1- the probability tha
the system returns to the beginning state

after having been in some state where

Let tim be the product of (l/p - 1) and the
expected time for all of the inoperable

components to be repaired, if that
happens before component

I
Let g go through all of the other
states which the system can be in.

Multiply the probability that the
system is in state g by l/p.

L
Add tim to the expected time for
the system to reach state i.

I
I

23No

Done

Figure A.4 Subchart C
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SysTTF = O
SysTTR= O

I
Let i go through all of the states

the system can be in when it fails.

I
SysTTF = SysTTF + the product of the probability
of being in state i when the system fails and the
expected time to reach state i, conditioned on the
the event that the system fai!s to state i.

(
SysTTR = SysTTR + the product of the probability
of being in state i when the system fails and the
expected time that it would take to repair the
system if it is in state i. This can be calculated
from Equation 3.16.

Go to the next
state which the

system can fail to

No
v

Done

Figure A.5 Subchart D
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Appendix B
In Chapter 7 there are two formulas presented for finding reliability over time t,

P~(t), forageneral Rof N configuration. The first formula isderivedintheteti

and takes the form:

P~(t)=~ ~P(J~(Jc)
k=R~~=k

where J is a subset of the N components of size IJI and

J. The second form is inferred from the 2 of 3 and 2 of 4

(B.1)

JC is the complement of

examples,

()P,(t) = f ~(-l~-R) ;=; P(J).
k=R J.lJl=k

To show they are the same, first note that [5]

()
5 Z P(J)P(JC) = ; ;(-l)(s-k) ; ~_P(J).

k=R Jl~=k k=R s=k JIJI-s

Thus, we want to prove that

(): \(_l)(’-W sk ~P(J)= $
k=Rs=k JIJI=s k=R

~(-1) ()‘k-R) ;:: P(J) ,
JIJl=k

(B.2)

(B.3)

Using s as the index on the right, instead of k, and changing the order of

summation on the left, gives us:

()$ ~(_,)(’-k) s (-)k ~P(J) = ~ ~(-l)(s-’) ; ‘~ P(J).
s.R k=R J/Jl=s s=R JIJI=s

From inspection, Equation (B.4) is true if

‘(-l)(s-k)[3=(-l)(s-R)(3k=R

(B.4)

(B-5)

Thus the formulations for P~(t) are the same if Equation (B-5) is valid. We

prove Equation (B-5) using the formula [5],
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(B-8)

Start with the left hand side of Equation (B-5); split off the k = s term (which

equals +1) and use Equation (B-8) to write

5(-1)(s-,)[;)=:(-1)(s-,)[s;1)+:(-1)(s-,)[;:;)+1.
k=R (B-7)

Note that the + 1 term can be treated as the k =s term for the second summation

on the right. We incorporate that term to run the sum to s and change the index

of summation (j = k - 1). Factor out (-1) from the first summation on the right and

rewrite Equation (B-7) as,

()~(_l)(+ s ()k = (-l)y(-1)(+ s-1 + ~’ ( ,)(s-J-l) s -1
k=R k=R k- j= R-f [) ]“

(B-8)

We see that the two summations cancel in Equation (B-8) except for the j = R -1

term. Thus,

~(-l,(s-k)(;)=(_,)(.-R)(;:;).
k=R (B-9)

The combinations on the right hand sides of Equations (B-5) and (B-9) are the

same by definition, and we are done.
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